A class of Frattini-like subgroups of a finite group

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the norm of the derived‎ subgroups of all subgroups of a finite group

In this paper‎, ‎we give a complete proof of Theorem 4.1(ii) and a new‎ ‎elementary proof of Theorem 4.1(i) in [Li and Shen‎, ‎On the‎ ‎intersection of the normalizers of the derived subgroups of all‎ ‎subgroups of a finite group‎, ‎ J‎. ‎Algebra, ‎323  (2010) 1349--1357]‎. ‎In addition‎, ‎we also give a generalization of Baer's Theorem‎.

متن کامل

On the planarity of a graph related to the join of subgroups of a finite group

‎Let $G$ be a finite group which is not a cyclic $p$-group‎, ‎$p$ a prime number‎. ‎We define an undirected simple graph $Delta(G)$ whose‎ ‎vertices are the proper subgroups of $G$, which are not contained in the‎ ‎Frattini subgroup of $G$ and two vertices $H$ and $K$ are joined by an edge‎ ‎if and only if $G=langle H‎ , ‎Krangle$‎. ‎In this paper we classify finite groups with planar graph‎. ‎...

متن کامل

SOME RESULTS ON THE COMPLEMENT OF THE INTERSECTION GRAPH OF SUBGROUPS OF A FINITE GROUP

Let G be a group. Recall that the intersection graph of subgroups of G is an undirected graph whose vertex set is the set of all nontrivial subgroups of G and distinct vertices H,K are joined by an edge in this graph if and only if the intersection of H and K is nontrivial. The aim of this article is to investigate the interplay between the group-theoretic properties of a finite group G and the...

متن کامل

On semi-$Pi$-property of subgroups of finite group

Let $G$ be a group and $H$ a subgroup of $G$‎. ‎ $H$ is said to have semi-$Pi$-property in $G$ if there is a subgroup $T$ of $G$ such that $G=HT$ and $Hcap T$ has $Pi$-property in $T$‎. ‎In this paper‎, ‎investigating on semi-$Pi$-property of subgroups‎, ‎we shall obtain some new description of finite groups‎.

متن کامل

Frattini and related subgroups of Mapping Class Groups

Let Γg,b denote the orientation-preserving Mapping Class Group of a closed orientable surface of genus g with b punctures. For a group G let Φf (G) denote the intersection of all maximal subgroups of finite index in G. Motivated by a question of Ivanov as to whether Φf (G) is nilpotent when G is a finitely generated subgroup of Γg,b, in this paper we compute Φf (G) for certain subgroups of Γg,b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1992

ISSN: 0022-4049

DOI: 10.1016/0022-4049(92)90021-7